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Entries deposited in the Protein Data Bank as of February

2004 for which both model and X-ray data were available were

analysed to identify cases of twinning using such simple

statistics as the R factor between potential twin-related

reflections. Careful consideration of all identified twins

showed that in many cases twinning was ignored during

structure solution and refinement. Manual analysis of the

models showed that twinning often occurs in association with

rotational pseudosymmetry parallel to the twinning operator.

The coexistence of these two phenomena complicates the

detection and diagnostics of twinning using currently available

twinning tests. It was concluded that a twinning-detection step

should be incorporated in every stage of structure analysis

from data acquisition to refinement and validation.
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1. Introduction

The Protein Data Bank (PDB; Bernstein et al., 1977; Berman

et al., 2002) is a rich source of biological, biochemical and

structural information. It also offers templates for the deter-

mination of new structures by molecular replacement. The

huge number of models with experimental X-ray data

provides numerous training cases of varying difficulties useful

to both the practical crystallographer and software developers.

These cases should be analysed before approaching real-life

difficult cases and, in an ideal world, all new software should

be tested against them before general release.

However, one should be careful when extracting informa-

tion from the PDB because of several problems, some of which

have been described by Kleywegt (1999, 2000). Currently, a

new entry goes through a careful validation procedure during

deposition. Nevertheless, at least one potential problem,

twinning (Giacovazzo et al., 1992), has not yet been addressed.

Twinning tests should be included in the validation routine

and, when twinning is present, the structure-factor analyses

need to be adjusted accordingly. If twinning is not taken into

consideration during refinement, the resulting model will

inevitably be degraded. Therefore, during deposition, it is

important to notify the depositor if this is the case.

The twinning phenomenon in crystals has been recognized

for a long time (Friedel, 1926). For small-molecule structures,

data collection and processing, structure solution and refine-

ment against data from twinned crystals are routine (Sheldrick

& Schneider, 1997). However, the situation with macro-



molecules is not yet so straightforward; the software used for

data-acquisition and structure-solution procedures have not

addressed this problem fully. For example, it is particularly

difficult to solve a twinned structure using experimental

phasing (Dauter, 2003; Rudolph et al., 2003).

The phenomenon of twinning should be considered as a

special case of crystal intergrowth. Crystal clusters are often

observed, but usually it is possible either to optimize crystal-

lization to grow a single crystal or to break off a single-crystal

fragment. In some cases this simple approach does not work

and one has to deal with diffraction data from an intergrown

crystal where the diffraction patterns of two or more frag-

ments overlap. If the fragments are orientated in a random

manner relative to each other the two lattices can be identified

from the first images. [A very interesting case of treatment of

such data has been reported by Dauter et al. (2005) in which

the intergrown domains have different space groups.]

However, diffraction patterns from such intergrown crystals

are often deceptive; if the diffraction spots from the two (or

more) crystal domains completely overlap, the diffraction

pattern will appear normal on initial inspection. In this case

the measured observation at a given reciprocal-lattice point is

in fact the sum of the twinned sets of intensities, weighted by

the relative volumes (‘twinning fractions’) of the different

components. This is called (pseudo)merohedral twinning and

the term ‘twinning’ in macromolecular crystallography usually

refers to this. The most common case seen in macromolecular

crystallography is hemihedral twinning, in which there are

only two crystal components related by a twofold operator.

However, the situation can be more complicated, as demon-

strated by Barends et al. (2005).

For two or more lattices to overlap completely, the unit-cell

parameters and crystal symmetry must possess some special

relationships. The unit-cell parameters must allow the possi-

bility of higher symmetry than the crystal actually shows. This

is most common in tetragonal, trigonal or cubic crystal classes,

where the twinning operator will be one of the symmetry

operators of the supergroup. However, it is also possible for

triclinic, monoclinic and orthorhombic crystals when the unit-

cell parameters possess some special properties (Giacovazzo

et al., 1992). A technique for identifying data sets where the

unit-cell parameters and space group can allow (pseudo)-

merohedral twinning and finding the possible twinning

operators is described by Flack (1987).

In these cases, to detect whether twinning has occurred

requires statistical analysis of the whole data set. When a

problem is detected two options are open: (i) to discard the

data set and try to obtain a new untwinned crystal or (ii) try to

solve and refine the structure using the twinned data. While

the first option seems to offer better data, it may turn out to be

time-consuming (or even impossible). Moreover, structural

genomics imposes strong constraints on the time spent on an

individual protein and option (ii), i.e. using what is at hand, is

becoming more common, with new software being developed

to meet this demand.

This contribution analyzes the PDB to find out how often

such a problem occurs and to generate ideas for the future

automatic treatment of structures using data from twinned

crystals. We also describe the major difficulties we faced in the

identification of twinning in special cases using the widely

available twinning tests.

2. Materials and methods

The PDB February 2004 release containing about 22 000

structures was screened and only those entries where both

coordinates and structures factors had been deposited (11 367

entries) were used in the analysis. The unit-cell parameters

and space group of these entries were analysed using the

technique described in Appendix A. If (pseudo)merohedral

twinning was possible then this data set was selected for

further analysis. 5% deviation from ideal twinning constraints

was allowed. This threshold is consistent with Mallard’s rule as

cited by Grimmer (2003). If observed intensities were present

in a CIF file they were used directly and for other applications

they were converted to structure factors using TRUNCATE

(French & Wilson, 1978). If only observed structure ampli-

tudes were available, estimates of the corresponding inten-

sities were generated, although some information must be lost.

Thus, in all selected cases there is at least one potential

twinning operator. Rtwin, defined in (1), was calculated with

respect to each operator for both observed intensities and

those calculated from the atomic model. The matrix for a

potential twinning operator, selected from the coset of

equivalent operators, and the associated Robs
twin and Rcalc

twin were

calculated using a program written by one of us (AAL).

The distribution of Robs
twin against Rcalc

twin, referred to as an RvR

plot and discussed below, can give a clear indication of twin-

ning. Detailed analysis was carried out for all likely twinned

structures. The analysis involved estimation of the likely

number of molecules in the asymmetric unit using SFCHECK,

self-rotation function (Rossmann & Blow, 1962) as imple-

mented in MOLREP (Vagin & Teplyakov, 1997), twinning

tests based on overall reflection statistics, namely cumulative

distribution of normalized intensity and moments of acentric

reflections (Rees, 1980) as implemented in TRUNCATE, and

H-tests (Yeates, 1997) as implemented in SFCHECK (Vaguine

et al., 1999). If the interpretation of these tests was ambiguous,

then molecular replacement using MOLREP and refinement

using REFMAC (Murshudov et al., 1997) were carried out

using the model from the PDB without substrates and with all

atomic displacement parameters (ADP) reset to equal values.

The models, Patterson and electron-density maps were

visualized using Coot (Emsley & Cowtan, 2004). Further

statistical analyses of the results were performed using the

statistical package R (R Development Core Team, 2004).

Some figures in this paper are based on those generated from

CCP4 software (Collaborative Computational Project,

Number 4, 1994).

3. RvR plot

Detection of twinning should ideally be performed at the stage

of data acquisition before the crystal structure is known. This
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task is not always trivial; for example, perfect twinning cannot

be detected from merging statistics. In some instances, even

finer (than Rmerge) statistical properties of the data are too

ambiguous for assignment of crystal symmetry and detection

of twinning prior to the structure determination.

Therefore, we undertook an investigation of all possible

twinning cases, known or undetected, deposited in the PDB.

The goal of the work was to understand the symmetry envir-

onments most frequently accompanying twinning and to

pinpoint problems with its detection. Since for these data sets
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Figure 1
(a) Schematic view of RvR scatter plot. (b) Observed RvR scatter plot: red, (potential) merohedral twins; black, (potential) pseudomerohedral twins.
Green ovals show the area populated by cases with TNCS (labelled A) and the areas corresponding to mislabelled data (labelled B and C). (c) Observed
RvR scatter plot (enlargement of Fig. 1b): black, known to be untwinned and not analysed; blue, found to be untwinned after further analysis; green,
twins without RPS; red, twins with some degree of RPS, but the difference between the twinning and RPS operators may be quite large. (d) Middle blue
curve, results after refinement of PDB entry 1nqh, performed without taking twinning into consideration, against simulated data sets with twinning
fractions in the range 0–0.5 with standard restraints on ADPs. Left red curve, the same calculations with relaxed restraints on the ADPs. Right green
curve, results before refinement. Here Rcalc

twin ’ 0.5. It is expected that proper twin refinement would preserve this value.



both the atomic model and the experimental data are avail-

able, the analysis is considerably simplified.

3.1. R factor with respect to twinning operator

Let us assume that in a given crystal the combination of

lattice and crystal symmetries allows twinning. This means that

there is at least one potential twinning operator Stwin. It can be

determined using, for example, the technique described in

Appendix A.

Let Rtwin be the intensity-based R factor between reflections

related by potential twinning operator Stwin,

Rtwin ¼

P
h

jIh � Ih0 jP
h

ðIh þ Ih0 Þ
; ð1Þ

where summation is over all unique reflections h, such that

intensities for both h and h0 = Stwinh have been measured and

h 6¼ h0. The definition of Rtwin (1) is similar to that of Rsym,

except that Stwin is not an operator of the crystal point group,

but belongs to the point group of the crystal lattice.

Robs
twin and Rcalc

twin are Rtwin calculated using observed inten-

sities and (untwinned) intensities derived from the atomic

model, respectively. The relationship between the two

magnitudes is as follows (see also Appendix B)

Robs
twin ’ Rcalc

twin ðno twinningÞ;

Robs
twin < Rcalc

twin ðpartial twinningÞ;

Robs
twin ’ 0 ðperfect twinningÞ: ð2Þ

The approximation sign in the equations above is a conse-

quence of model and experimental errors. Our experience

shows that in the majority of the cases these errors do not

affect the qualitative conclusions.

If the crystal symmetry has been misspecified1 then the

analysis of unit-cell parameters and space group identifies

missing elements of the point group of the crystal as twinning

operators. In this case it is expected that both

Robs
twin ’ 0

Rcalc
twin ’ 0

�
ðmisspecified crystal symmetryÞ: ð3Þ

Note that a small value of Robs
twin can be misinterpreted, as this

takes place in two different cases; see (1) and (2). In particular,

false positives in detection of twinning can be found in some

PDB entries with misspecified symmetry (see x3.4.2).

3.2. Twinning interfering with NCS

Let a crystal or an individual crystal of a twin possess

noncrystallographic symmetry (NCS) and let one of the NCS

operators be such that its rotational component is approxi-

mately equal to the (potential) twinning operator. In this case,

the NCS could interfere with twinning and is further referred

to as rotational pseudosymmetry (RPS). There are two

reasons why twins with RPS are of special interest.

Firstly, a correlation between observations related by

potential twinning operators could be caused either by RPS or

by both RPS and twinning. The two cases cannot be discri-

minated by Robs
twin alone. These cases are particularly difficult

for twinning detection prior to the structure determination.

Secondly, we expect a relatively high frequency of twins

with RPS because of high likelihood of the following two

mechanisms of their formation. The first mechanism assumes a

change of crystal symmetry (we are interested in symmetry

reduction) which is sometimes observed during crystallization,

seeding, soaking, fast cooling and even data collection. It is

physically reasonable to expect that this transition starts

simultaneously in several areas of the crystal. As a result,

several identical domains are formed in two or more different

orientations related by the broken symmetry element and thus

the crystal becomes twinned and the broken symmetry

element becomes a twinning operator. At the same time it

becomes an RPS operator, relating molecules in the asym-

metric unit which were equivalent by crystal symmetry before

the transition. In the second mechanism an individual crystal is

formed by tightly packed molecular layers with symmetry that

is higher than that of the interfaces between them. In these

structures the whole layers are (approximately) invariant with

respect to NCS operators. Consequently, any NCS operator in

the layer at a twinning interface relates two twinning domains

and thus the NCS is RPS. The high frequency of twinning

interfaces in such symmetry environments leads to statistical

crystals (Bragg & Howells, 1954; Cochran & Howells, 1954).

If there is no NCS, no pronounced anisotropy and no

serious experimental errors, the expected value of Rcalc
twin can be

estimated to be 0.5 as shown in Appendix B. However, when

RPS is present, the correlation between related reflections

causes a decrease in Rcalc
twin. Thus, in addition to (2) the

following holds,

Rcalc
twin ’ 1=2 ðno RPSÞ;

Rcalc
twin < 1=2 ðRPSÞ: ð4Þ

Note that even if RPS is present, (2) holds. Thus, despite the

similar effects of RPS and twinning on Robs
twin, the availability of

a crystal model in principle allows us to distinguish between

twinning, RPS and twinning interfering with RPS using such

simple statistics as Robs
twin and Rcalc

twin.

The relations (2)–(4) are illustrated in Fig. 1(a). The figure

shows areas corresponding to different combinations of RPS

and twinning.

3.3. Selection of twinning cases

The simplest possible way to select twinning cases from the

PDB would be to extract the relevant information from the

PDB headers and/or related papers. However, this approach is

not sufficient because the researchers depositing data and/or

writing papers either may have not noticed or not discussed

twinning (false negatives) or may have misinterpreted higher

crystal symmetry as twinning (false positive). Therefore, it was
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1 We say that crystal symmetry is misspecified when the space group reported
in the PDB file is a subgroup of the true space group of the crystal, e.g. P4
instead of P422. Accordingly, in such cases the PDB file contains more
molecules than should be in the asymmetric unit of the crystal, but some of
these molecules are actually related by the missing symmetry operator(s).



decided to analyse PDB entries directly. This direct approach

may also lead to a better understanding of the problems with

the detection of twinning.

We analysed unit-cell parameters and the reported crystal

symmetry of 11 367 entries present in the PDB at February

2004 containing both an atomic model and X-ray data. Entries

where twinning is impossible or where the data were

corrupted and unreadable by our software were rejected from

further consideration. For the remaining 4086 entries, poten-

tial twinning operators were determined and Robs
twin and Rcalc

twin

were computed. If there were two or more (non-equivalent)

potential twinning operators (as, for example, in P3), then that

which gave the lowest value of Robs
twin was chosen. Thus, each

selected entry was characterized by only two quantities, Robs
twin

and Rcalc
twin, and the corresponding point was drawn on the plot

of Robs
twin versus Rcalc

twin (RvR plot; see Fig. 1b).

For each structure represented in Fig. 1(b), we analysed

whether the twinning, if present, is merohedral or pseudo-

merohedral using the technique described in Appendix A. The

points in Fig. 1(b) are coloured according to the results of this

analysis.

All cases belonging to ‘twinning areas’ in the RvR plot

(Fig. 1a) were analysed in detail to validate the presence or

absence of twinning and to characterize the NCS if present.

The specific areas and some peculiarities of the RvR plot are

discussed below.

3.4. Observed RvR plot

3.4.1. Main cluster. A large cluster around (0.5, 0.5)

corresponds to untwinned crystals with no pronounced

pseudosymmetry. However, twinning is not forbidden by the

unit-cell parameters and space group and could occur for

related crystals. Some of these points correspond to data sets

which were detwinned before deposition. These cases were

not included in further analysis. In particular, all untwinned

crystals in space groups P3x, P3x21, P3x12, P4x, I4x, P6x, P2x3,

I2x3 and F23 belong to this area. Since the lattices of these

space groups have higher rotational symmetry than that of

crystals, no extra constraints on the unit-cell parameters are

needed for twinning to occur (Giacovazzo et al., 1992;

Schlessman & Litvin, 1995).

3.4.2. Misspecified crystal symmetry. The cluster at the

origin corresponds to structures in which the crystal symmetry

is misspecified and is actually higher than that used in the

refinement and reported in the PDB entry. Thus, both Robs
twin

and Rcalc
twin are expected to be close to 0.0. Several randomly

chosen cases from this cluster have been successfully refined in

the higher symmetry space group. It is interesting to note that

for two of them twinning was reported, presumably on the

basis of the low Robs
twin; these are examples of false positives.

The first reliable case of twinning has Rcalc
twin = 0.2. At the

same time, in some cases where the space group was mis-

specified Rcalc
twin goes up to 0.3; these are mainly low-resolution

structures where it is easy to overfit the model and to generate

significant differences between independently modelled

symmetry-related molecules.

3.4.3. RPS. The lower tail of the main cluster corresponds to

untwinned crystals with RPS. Most points in this area are

located on the diagonal, with Rcalc
twin ’ Robs

twin in the range

0.35–0.4. This tail extends along the diagonal down to about

0.2. Here we find one of the most extreme examples, the

untwinned 1i1j (Lougheed et al., 2001), in which the root-

mean-square deviation of C� atoms from the

positions corresponding to higher crystal symmetry is about

0.15 Å.

3.4.4. Translational noncrystallographic symmetry (TNCS).
The main cluster has an upper diagonal tail around (0.6, 0.6)

corresponding to structures with TNCS, in which the set of

TNCS vectors and consequently the modulation of intensities

in the reciprocal space caused by TNCS are not invariant with

respect to Stwin. Thus, the intensities related by Stwin are

modulated differently and the assumptions required for the

relation (10) in Appendix B to be valid are violated. The

numerator in (1) for both Robs
twin and Rcalc

twin increases, increasing

their values.

Among such structures we observed no cases of twinning

(note the empty area below this cluster in the RvR plot).

3.4.5. Mislabelled and corrupt data. There are some extra

features on the RvR plot arising from mislabelling of columns

in the CIF file. Two small clusters shown by circles in Fig. 1(b),

which are just above and below the main cluster, are worth

mentioning. In the first one, at about (0.5, 0.4) on the RvR

plot, the structure amplitudes are present in the CIF file

but are labelled as intensities. In the second one, at about

(0.5, 0.6), the intensities are labelled as structure amplitudes.
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Table 1
Frequency of twinning in different symmetry environments.

No. of twins

Crystal symmetry or
type of merohedry Total RPS TNCS

RPS +
TNCS DNA Detwinned

P1 1 — — — 1 —
P21 13 11 3 3 — —
C2 1 — — — — 1
P21212 1 — — — — —
P212121 2 2 — — — —
C2221 1 1 1 1 — —

Pseudomerohedral total 19 14 4 4 1 1

P41 4 1 1 — — —
P43 6 4 1 1 — —
P42 1 1 1 1 — —
I4 3 2 — — — —
P31 7 5 — — — 1
P32 6 4 2 1 — —
P321 2 2 — — — —
P3121 2 — — — — —
P3221 1 1 — — — —
P3212 2 1 — — 1 —
H3 15 3 1 1 2 —
P63 6 3 — — — 1
P65 3 3 2 2 — —
I213 1 — — — 1 —

Merohedral total 59 30 8 6 4 2

Total 78 44 12 10 5 3



These peculiarities may in theory be identified by simple

statistical techniques. However, if such factors as twinning,

pseudosymmetry or anisotropy affect the data or several

deposition inaccuracies (for example, deposition of the
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Figure 2
Effect of the resolution cutoff on the experimental cumulative distributions of Z. The plots were produced using X-ray data from PDB entry 1l2h
(Rudolph et al., 2003). (a) Experimental cumulative distributions of Z for all the data, resolution range 18.6–1.54 Å, (b) the experimental second moment
of Z for acentric reflections versus resolution, (c) experimental cumulative distributions of Z in the resolution range 18.6–2.20 Å, (d) completeness and R
standard versus resolution. The resolution range used in (c) is shown by green boxes in (b) and (d). The thick blue and red curves correspond to centric
and acentric reflections, respectively. The thin black curves in (a) and (c) are the reference (theoretical) cumulative distributions of Z corresponding to
(top curves) centric reflections in the untwinned case, (middle curves) centric reflections in the perfectly hemihedrally twinned case (i.e. with two
twinning fractions) and acentric reflections in the untwinned case and (bottom curves) acentric reflections in the perfectly hemihedrally twinned case.
The thin black curves in (c) are theoretical second moments of Z for acentric reflections versus resolution for (top line) the untwinned and (bottom line)
perfectly hemihedrally twinned cases.



detwinned instead of the measured data) are present simul-

taneously then such analysis becomes complicated, if possible.

3.4.6. Areas of the RvR plot indicating twinning is likely.

The points below the diagonal should, at least in theory,

correspond to twins. In particular, points that deviate from the

diagonal with Rcalc
twin significantly less than 0.5 should corre-

spond to twins with RPS (see x3.2) and with an adequate

refinement protocol, the deviation from the diagonal should

correlate with twinning fraction.

The cases with Rcalc
twin in the range 0.2–0.6 and Robs

twin in the

range 0.0–0.3, as well as some randomly chosen cases from

other areas, were further investigated (coloured circles in

Fig. 1c). The protocol of analysis included validation of the

model, various twinning tests performed with both observed
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Figure 3
The effect of RPS on the perfect twinning tests. The plots were drawn using X-ray data from PDB entry 1i1j (Lougheed et al., 2001). (a) and (c) Sample
cumulative distribution of Z and (b) and (d) second moment of Z for acentric reflections versus resolution for (a) and (b) original data and (c) and (d)
data with simulated hemihedral twinning. The colour legend is the same as for the similar plots in Fig. 2.



and calculated intensities with different resolution cutoffs and

characterization of the NCS. In particular, NCS operators if

present were compared with potential twinning operators to

identify RPS. If there was spatial pseudosymmetry, attempts

were made to refine structures in the corresponding higher

symmetry space group to ensure that the reported crystal

symmetry was correct.

The rectangular area of the RvR plot under consideration

overlaps with the areas discussed above and therefore includes

a number of other data sets which turned out to be untwinned

but which had special ‘features’ such as misspecified symmetry,

mislabelled structure amplitudes or which displayed RPS and

therefore lay on the diagonal with both Robs
twin and Rcalc

twin below

0.5.

78 cases of twinning have been identified, verified and

characterized. They are marked in Fig. 1(c) with red and green

circles corresponding to the presence and absence of RPS

interference, respectively. These cases are further discussed in

the next subsection.

3.5. Twinning cases

All the structures and their data belonging to the twinning

areas of the RvR plot (Figs. 1a and 1c) were analysed in detail

to identify actual twinning cases. Table 1 contains symmetry

and NCS information for the 78 twinning cases identified with

a high degree of confidence. NCS for DNA structures was not

analysed.

There are two features of this table that are worth

mentioning. Firstly, pseudomerohedral twinning is not

unusual. Secondly, the cases where twinning interferes with

RPS are more frequent than simple twinning, especially for

the pseudomerohedral twins.

One of the important practical conclusions from these

analyses is as follows. If the perfect twinning tests show the

presence of twinning, it does not necessarily mean that the

twinning is merohedral. Thus, even if data from a perfect twin

have point-group symmetry P422, it is not necessary, neither

theoretically nor in practice, that the point-group symmetry of

the individual crystal is P4 and that the twinning is mero-

hedral, generated by twofold axis orthogonal to crystallo-

graphic fourfold. For example, the crystal symmetry of 1upp

(Karkehabadi et al., 2003) is C2221 and there are two twinning

domains, with one possible choice of twinning operator being

a fourfold axis along one of the crystallographic twofold axes.

3.6. False negatives

It is interesting to note that only one third of the cases

identified as twins by our analysis were reported as such in the

PDB submission, although in some of these cases analysis of

intensities derived from atomic models shows that the twin-

ning was actually taken into account during refinement.

Nevertheless, in a significant number of cases this was not

done.

The effect of ignoring twinning on Rcalc
twin is illustrated by the

following simulated experiment. The 3.1 Å data from an

untwinned crystal were artificially twinned to produce six data

sets with twinning fractions of 0.0, 0.1, . . . , 0.5. The model

from the PDB was refined against all data sets following the

same protocol, without model rebuilding and ignoring twin-

ning. Robs
twin and Rcalc

twin were computed for these six data sets and

for the intensities calculated from the appropriate ‘refined’

models. The result is shown as the central blue curve in

Fig. 1(d). If twinning had been properly taken into account

during refinement then Rcalc
twin would remain constant

throughout all these refinements (vertical green line on the

right in Fig. 1d). Note that ‘incorrect refinements’ have been

carried out starting from the correct model. Even in these

cases the points clearly drift towards the left on the RvR plot.

Since real-life crystal structure solution requires many cycles

of refinement alternated with model building, it is anticipated

that this drift to the left is much more serious than in this

simulation. To analyse this trend further ‘refinements’ were

carried out with relaxed restraints on ADPs. The results are

plotted in red in Fig. 1(d) and show further reduction of Rcalc
twin.

This simulated experiment helps to explain why only some

of the twinning cases without RPS (green points in Fig. 1c)

show Rcalc
twin ’ 0.5. In all of them proper refinement accounting

for twinning has been performed. In some twinning cases

without RPS, Rcalc
twin is significantly less than 0.5 and, judging by

the simulated results shown in Fig. 1(d), we expect that the

refinement protocol was not adequate.

The above simulated experiment is one of the cases where

the so-called ‘model bias’ arises because of an insufficient

number of parameters and the addition of only one extra

parameter, the twinning fraction, would substantially reduce

it. Generally speaking, model bias is not so much a conse-

quence of a large number of parameters, but of incorrect

parameterization; bias is best corrected by re-parameteriza-

tion of the model rather than by removing a part of it.

4. Performance of twinning tests

During the verification of twinning in the cases selected using

the RvR plot a number of problems were encountered. Some

of these problems are of a general nature and are worthy of

special attention. This section discusses the influences of

experimental error and pseudosymmetry on perfect twinning

tests and the influence of RPS on one particular partial

twinning test, the H-test.

4.1. Effect of experimental errors on the perfect twinning
tests

In the perfect twinning tests, the observed intensities

normalized within resolution shells are assumed to be sampled

from the one-dimensional distributions of the random variable

Z. Two different distributions are considered, one for centric

and one acentric reflections. Derivation of these distributions

(Rees, 1980) is based on the Wilson distribution of structure

factors (Wilson, 1949) for untwinned crystals. Two of the major

tests are based on comparison of the theoretical and observed

curves of (i) the cumulative distribution of Z versus Z and (ii)
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the second moment of Z versus resolution, shown in Figs. 2, 3

and 4.

It is necessary to use sensible resolution cutoffs to be able to

draw any reliable conclusions from these tests. The reason for

this is that high-resolution reflections as a rule have larger

experimental errors, but the theory does not take these into

account.

Our experience shows that the low-resolution cutoff is not

necessary; however, it is important to remove high-resolution

data, where R standard = h�(F)i/hFi starts growing and/or

where a large variation of the second moment of Z for acentric

reflections is observed. The required plots are available from

various software, e.g. TRUNCATE and SFCHECK. An

example of how this rule of thumb works is shown in Fig. 2. In

this example, the experimental cumulative distribution of Z

clearly indicates perfect twinning with a high-resolution cutoff

at 2.2 Å. In contrast, the same test but with all data is

misleading and the experimental curves are close to the

theoretical curves for untwinned crystals.

It is important to emphasize that high-resolution reflections

do contain useful information about the structure despite a

resolution cutoff being needed for some applications.

4.2. Effect of RPS on the perfect twinning tests

Our experience shows that RPS affects perfect twinning

tests only in the presence of twinning, when it partially

compensates for the effect of twinning.

The following numerical experiment illustrates this effect.

The 1i1j X-ray data set represents an untwinned crystal with

RPS. The data set with perfect twinning was simulated from

the original untwinned data. All parameters except the twin-

ning fraction are the same in the two data sets. The experi-

mental second moment of Z versus resolution and the

cumulative distribution of Z are shown in Fig. 3. The experi-

mental curves for the original data set match theoretical

predictions (Figs. 3a and 3b); however, this is not so for the

simulated data set, where only a marginal deviation from the

theoretical curves for untwinned data towards those for

perfect twins is observed (Figs. 3c and 3d). This example

demonstrates that the simple theory based on Wilson’s

distribution assuming uniform distribution of atoms in the

asymmetric unit fails for twins with RPS.

Such behaviour can intuitively be understood by imaginary

traversing of the RvR plot (Fig. 1). If we travel from the main

cluster at (0.5, 0.5) towards the origin along the diagonal, we

start from a point without anomalies of any kind and finish at

the point where crystal symmetry is higher than reported

symmetry but also with no anomalies. At both ends we have

untwinned data statistics and the same statistical distributions

could be expected all along the diagonal pathway (where

untwinned data sets with RPS are located). Another limiting

path is from the point (0.5, 0.0), below the main cluster,

towards the origin along the abscissa. On this path the tran-

sition occurs from perfect twin statistics to untwinned statis-

tics. The above example with simulated twinning is located on

this path at a point where this transition is almost accom-

plished.

This behaviour of perfect twinning tests has been observed

in a number of real cases where RPS interferes with twinning

(Table 1; see also an example in Dauter et al., 2005). The closer

the NCS operator generating RPS comes to an operator of

higher space group, the less contrast there is between the

results of perfect twinning tests for untwinned and twinned

data. This lack of contrast creates difficulties for diagnostics.

Fortunately, the atomic structure in such circumstances can

frequently be solved and refined to a first approximation in a

higher symmetry space group and when the refinement sticks

at an unreasonably high R factor, the structure can be resolved

and further refined in the correct space group. In this scenario

problems with uncertain diagnosis are avoided, but it is

necessary to collect data in the lower symmetry space group

and to keep them unmerged. Reliable diagnosis of twinning

therefore becomes an important component of both data

collection and refinement.

The effect of RPS on intensities decreases and therefore

effect of twinning becomes more pronounced in higher reso-

lution shells, where the intensities are affected by the small

difference between NCS-related molecules. However, as

noted above the data in higher resolution shells are less reli-

able for twinning tests because of experimental errors (see

x4.1).

4.3. TNCS and twinning

Table 1 shows that when twinning and TNCS coexist the

third ingredient, RPS, is usually also present (see, for example,

PDB entry1upp; Karkehabadi et al., 2003). This is not

surprising because the reduction of symmetry resulting in

twinning must involve reduction of crystal point group, i.e.

formation of RPS.

In these structures higher point-group symmetry and

shorter crystallographic translations can be accommodated by

small, sometimes less than 1 Å, displacements of atoms. Thus,

the modulation of intensities in the reciprocal space caused by

TNCS can be considered in terms of sublattices with different

mean intensities (pseudocentering). Note that in these struc-

tures the sublattices are invariant with respect to twinning

operator (compare with x3.4.4).

The modulation of intensities owing to TNCS has an effect

on the perfect twinning tests which is opposite to that of

twinning. This effect is present in both twinned and untwinned

crystals, e.g. the second moment of Z for acentric reflections

becomes greater than two in the absence of twinning. The

effect becomes stronger when the deviation from higher

crystal symmetry decreases. Demodulation (normalization

accounting for TNCS) or examination of the separate

sublattices may reduce the effect of TNCS, but the effect of

RPS remains. For different sublattices, the effect of the RPS is

different and depends differently on the deviation from higher

crystal symmetry, but it always partially compensates for the

effect of twinning.
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The analysis of the data in terms of sublattices can be

avoided by using the perfect twinning test suggested by Padilla

& Yeates (2003) and implemented in DATAMAN (Kleywegt

& Jones, 1996). With a proper resolution cutoff this test

indicates perfect twinning, but the contrast is less than that

theoretically predicted (Padilla & Yeates, 2003). The presence

of RPS in most twins with TNCS explains this observation, as
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Figure 4
Cumulative distributions of H for three twins: (a) 1rxf (Morgan et al., 1994), (b) 1ku5 (Li et al., 2002) and (c) 1gwy (Mancheno et al., 2003). In 1ku5 and
1gwy, RPS interferes with twinning. Experimental distributions are represented by red dotted lines. The intensities derived from atomic models were
used to simulate cumulative distribution of H for different twinning fractions (thick blue lines), the values of the twinning fractions being given over the
corresponding lines.

the effect of RPS partially compensates the effect of twinning

even if the modulation of intensities owing to TNCS is

accounted for.

4.4. Partial twinning tests

There are two partial twinning tests most frequently used in

macromolecular crystallography, the Britton test (Britton,

1972) and the H-test (Yeates, 1997). In these tests the data are

assumed to be processed in the correct group or its subgroup

and not ‘over-merged’ in a higher group. These tests are

applied to a given potential twinning operator suggested

by the crystal and lattice symmetries. Therefore, all non-

equivalent twinning operators (e.g. there are two of them in

P3) have to be tested individually. Unfortunately, neither of

these tests can distinguish between higher symmetry and

perfect twinning. Nevertheless, in the case of partial twinning

they both indicate twinning and estimate the twinning frac-

tion. We discuss the H-test in more detail with an emphasis on

the effect of pseudosymmetry on its behaviour.

In the H-test the joint two-dimensional distribution of the

intensities related by potential twinning operator is of interest.

Thus, extra information is used compared with the previously

discussed twinning tests, which are based on one-dimensional

distribution of intensities derived from the Wilson distribu-

tion. The idea of this test is that the cumulative distribution

P(H) of a random variable H is a straight line over the whole

range of possible H. In theory, which unfortunately does not

take account of the effects of RPS, the linearity holds for both

twinned and untwinned data and the slope of the plot P(H)



versus H depends on the twinning fraction (blue lines in

Fig. 4a).

In the original version of the H-test the linearity is essential,

as the twinning fraction is estimated from mean value of H.

However, theoretically impossible difference between inten-

sities related by twinning operator may appear as a result of

radiation damage to the crystal if there was a long time

interval between the two measurements. Too large differences

could also occur if the X-ray beam was focused at different

parts of the crystal during these two measurements. The

presence of such outliers distorts the experimental distribution

of H at larger H and causes non-linearity as in Fig. 4(a). This

type of non-linearity is typical of twins without interfering

RPS, although the range of H where the plot deviates from the

straight line varies. Such cases can be treated by a modified

H-test in which the twinning fraction is estimated using the

slope of the plot at the origin (Yeates & Fam, 1999).

If RPS interferes with twinning then all pairs of reflections

involved in the H-test are affected and the cumulative distri-

bution of H becomes non-linear over the whole range of the

argument (Fig. 4b) and both versions of H-test fail to give a

reasonable estimate of the twinning fraction. In cases similar

to that in Fig. 4(b), however, the twinning fraction can be

estimated from the value of H at the point where the

experimental curve approaches the line P(H) = 1. In this

formulation the H-test is equivalent to the Britton test. A

disadvantage of such a formulation is that the estimate of

twinning fraction is based on the right tail of the distribution,

which can be seriously corrupted by the effects of experi-

mental errors mentioned above (see Fig. 4c). Thus, further

improvement of the test can only be achieved by accurate

modelling of the effect of RPS, TNCS and anisotropy and by

accounting for outliers, while keeping the advantage of the

original version of the H-test in which the whole data set is

utilized.

5. Conclusions

This analysis of the PDB shows that combinations of crystal

and lattice symmetries can allow twinning in more than 30%

of cases, with both merohedral and pseudomerohedral cases

widespread. For easy identification of twinning, the RvR plot

was designed, which utilizes both observed intensities and

intensities derived from the atomic models. Careful analysis of

suspected twins identified from this plot has flagged 78 cases

with a high degree of confidence. However, since refinement

of the atomic model ignoring twinning causes model bias and

thus distorts this picture, we expect there may be more actual

twins. Moreover, since twinning is one of the factors that often

prevents structure solution, there are almost certainly many

cases of twinning that have not been fully analysed and

deposited in the PDB.

Analysis of all the identified cases showed that RPS coexists

with twinning more frequently than we expected, affecting the

intensity distributions and thus increasing the difficulty of

detecting twinning and hence the analysis of the structure. We

found that all twinning tests can fail to give convincing results.

The situation becomes even more serious when TNCS is

added to the picture. Ideally, one should also consider other

crystal-growth anomalies, such as statistical crystals, non-

merohedral twinning and split crystals.

As a result of in-depth analysis of the identified twinning

cases, we arrived at the conclusion that it is important to check

for this and other crystal-growth anomalies at every stage of

structure analysis: starting from data acquisition and ending

with refinement and validation. To do this correctly, it is

important to build a model accounting for various ‘abnorm-

alities’ and utilizing all the information available up to the

current stage. For example, at the data-collection stage an

awareness of twinning may help to choose the correct strategy;

during refinement proper modelling of this phenomenon can

reduce the noise in the electron density and hence help to

reveal finer details of the molecular structure.

APPENDIX A
A1. Algorithms used in the determination of twinning
operators and their type of merohedry

Several authors (Flack, 1987; Le Page, 2002; Grimmer,

2003) have already described the automatic identification of

potential twinning operators using unit-cell parameters and

space group. A necessary step in all these algorithms is

reducing the cell to a minimum primitive cell, either a Buerger

or Niggli cell (see, for example, Mighell & Rodgers, 1980, and

references therein). Here, we describe an algorithm designed

by one of us (AAL) and implemented in a set of routines.

Given unit-cell parameters and crystal symmetry, potential

twinning operators are determined as follows. The cell is

reduced to the primitive cell with the shortest unit-cell edges

and the point-group operators derived from crystal symmetry

are transformed accordingly to give G, a group of 3 � 3

matrices with elements from {�1, 0, 1}. The set of 504 matrices

with elements from {�1, 0, 1} of finite order with respect to

matrix multiplication and with determinant equal to one is

then generated. This set includes all operators of all rotational

point groups expressed in fractional coordinates, provided

that the unit cell with shortest edges is chosen. These opera-

tors are sorted according to the perturbation that they cause to

the metric derived from the primitive unit-cell parameters.

The best 24 or less generators satisfying the perturbation

threshold of 5% are then used sequentially according to the

above sorting order to expand G to H, the rotational point

group of the lattice,

H ¼ G [Ga [GaGa [ . . . ; ð5Þ

where a is the tested generator. Expansion (5) is carried until

a(Ga)n contains no new elements or a new element is incon-

sistent with H being finite group. Any new consistent

q 2 aðGaÞ
n generates coset Gq of new elements that are added

to existing subset of H. This procedure simultaneously

produces H and its coset decomposition with respect to G.

Representatives of the cosets, one from each excluding G are

potential (non-equivalent) twinning operators.
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To draw Fig. 1(b), we also analysed the type of merohedry

of potential twinning operators using the following method.

Let G be a rotational point group and M be a metric repre-

sented as a set of 6� 6 matrices and as a 6-vector, respectively.

Let M be invariant with respect to G, i.e.

gM ¼ M; g 2 G: ð6Þ

Consequently, the projector

� ¼ jGj�1 P
g2G

g

is such that �M = M. Let R be a 6 � 6 matrix representing a

potential twinning operator. If

R� ¼ �; ð7Þ

then

RM ¼ R�M ¼ �M ¼ M

and no constraints are needed for M to be invariant with

respect to R in addition to those imposed by (6). Therefore, if

(7) holds, then the twinning generated by R is merohedral.

This type of merohedry check requires no tables and can be

performed in integers if the 6� 6 matrix representation of G is

generated from its 3 � 3 matrix representation in fractional

coordinates.

APPENDIX B
Consider, for example, a threefold twinning operator

Stwin relating three twinning domains. Let h0 = Stwinh and

h0 0 = Stwinh0 and h, h0 and h00 be different (be in a general

position with respect to Stwin) and corresponding intensities

Iobs
h , Iobs

h0 , Iobs
h00 be measured. For twinning fractions �1, �1, �1 and

neglected errors,

1 ¼ �1 þ �2 þ �3;

Iobs
h ¼ �1Icalc

h þ �2Icalc
h0 þ �3Icalc

h00 ;

Iobs
h0 ¼ �3Icalc

h þ �1Icalc
h0 þ �2Icalc

h00 ;

Iobs
h00 ¼ �2Icalc

h þ �3Icalc
h0 þ �1Icalc

h00 : ð8Þ

Relations (2) can be verified as follows.

In the absence of twinning, �1 = 1 and �2 = �3 = 0, and

therefore for all h with Iobs
h measured, Iobs

h = Icalc
h and hence

Robs
twin = Rcalc

twin.

For perfect twinning �1 = �2 = �3 and Iobs
h = Iobs

h0 = Iobs
h00 and

Robs
twin = 0.

For partial twinning

jIobs
h � Iobs

h0 j þ jI
obs
h0 � Iobs

h00 j þ jI
obs
h00 � Iobs

h j

¼ j�1ðI
calc
h � Icalc

h0 Þ þ �2ðI
calc
h0 � Icalc

h00 Þ þ �3ðI
calc
h00 � Icalc

h Þj þ . . .

� �1jI
calc
h � Icalc

h0 j þ �2jI
calc
h0 � Icalc

h00 j þ �3jI
calc
h00 � Icalc

h j þ . . .

¼ ð�1 þ �2 þ �3ÞðjI
calc
h � Icalc

h0 j þ jI
calc
h0 � Icalc

h00 j þ jI
calc
h00 � Icalc

h jÞ

¼ jIcalc
h � Icalc

h0 j þ jI
calc
h0 � Icalc

h00 j þ jI
calc
h00 � Icalc

h j: ð9Þ

If intensities are not equal to zero, then the two sides of the

above relation are equal only if Icalc
h = Icalc

h0 = Icalc
h00 . Hence,

assuming that the crystal symmetry is correctly specified and

thus there are at least some non-zero nonequal triplets of

calculated intensities, we have Robs
twin < Rcalc

twin.

Relations (2) can be similarly derived for any kind of

twinning, including the usual case of two twinning fractions.

Let us estimate the expected value of Rcalc
twin (in the absence

of any twinning) defined in (1), assuming that (i) there is no

RPS and (ii) the overall ADP tensor and the set of TNCS

vectors (if TNCS is present) are invariant with respect to Stwin.

Formally, these mean (i) mutual independence of all random

variables Ih and (ii) identical exponential distribution of

random variables Ih and Ih0, h0 = Stwinh. In particular, the

random variables Ih and Ih0 possess the following joint prob-

ability distribution density

pðIh; Ih0 Þ ¼ pðIhÞpðIh0 Þ ¼ �
2
h expð��hIh � �hIh0 Þ;

Ih > 0; Ih0 > 0; ð10Þ

where the multipliers (�h) at Ih and Ih0 are the same.

For new variables

rh ¼ Ih þ Ih0 ; sh ¼ Ih � Ih0 ; ð11Þ

the joint probability distribution density is

pðsh; rhÞ ¼
1
2 �

2
h expð��2

hrhÞ; �rh < sh < rh; ð12Þ

and, in particular, the conditional probability distribution

density of sh given rh is

pðshjrhÞ ¼
pðsh; rhÞ

pðrhÞ
¼

1

2rh

; �rh < sh < rh: ð13Þ

Thus, the expected value of |sh| given rh is

Eðjshj
��rhÞ ¼

1

2 rh

Rrh

�rh

jshj dsh ¼
rh

2
: ð14Þ

Finally,

EðRtwinÞ ¼ E

P
h

jshjP
h

rh

2
4

3
5 ¼ E

P
h

Eðjshj
��rhÞP

h

rh

2
4

3
5 ¼ E 1

2

� �
¼

1

2
:

ð15Þ

The last equation means that Rtwin averaged over all possible

structures obeying the above conditions (i) and (ii) equals one

half exactly. For a particular structure, this means the

approximate equation in (4).

These calculations can also be applied to two unrelated

structures, as was performed by Srinivasan & Parthasarathy

(1976) for a similar problem but for the conventional R factor.

It is important to stress that this interpretation does not

mean that in the X-ray experimental data the resolution shells

with Rmerge higher than 50% are useless. In the case of

experimental data, experimental errors are necessarily present

and their distribution is different from that used to derive the

above relation. The estimation of the resolution cutoff is a

completely different problem and has to be approached using

different notions, such as the informational content of the data

or the informational content of the data per unit of synchro-

tron time.
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